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Abstract

Based on the effective medium approximation and the fractal theory for the description of nanoparticle cluster and

its radial distribution, a method for modeling the effective thermal conductivity of ‘‘nanofluid’’ is established. The size

effect and the surface adsorption of nanoparticles are taken into considerations. The proposed fractal model is discussed

in detail for its application, and it predicts quite well with our recent measuring data for dilute suspensions of metallic

oxide nanoparticles.

� 2003 Elsevier Science Ltd. All rights reserved.

Keywords: Effective thermal conductivity; Nanoparticles; Clustering; Fractal model; Surface adsorption; Size effect

1. Introduction

The researches on the effective thermal conductivity

of liquid with nanoparticle inclusions attract more and

more interests experimentally and theoretically. The ef-

fective thermal conductivity of nanoparticle suspension

can be much higher than the normally used industrial

heat transfer fluid, such a fluid has terminologized as

‘‘nanofluid’’ by S.U.-S. Choi of Argonne National

Laboratory of USA in 1995, and considered to be a

novel enhanced heat transfer fluid. Very recently,

Keblinski et al. [1] reported their idea on the possible

mechanisms of enhancing thermal conductivity, and

suggested that the size effect, the clustering of nano-

particles and the surface adsorption could be the major

reason of enhancement, while the Brownian motion of

nanoparticles contributes much less than other factors.

Wang and Peng [2] have studied experimentally the ef-

fective thermal conductivity of liquids with 25 nm SiO2

particle inclusions, and observed the percolation pattern

of particle clustering by scanning tunnel microscopic

(STM) photos. It was believed that clustering could af-

fect the enhancement prominently. As the measurement

is made by an unsteady thermal-probe method, the effect

of liquid convection cannot be avoided. Thus, a novel

measurement method, named as quasi-steady-state

method and is usually used in the measurements of

thermophysical properties of solids, was adapted for

new measurements, to exclude the effect of local con-

vection [3]. The same as we reported previously, the

modeling of effective thermal conductivity of nanopar-

ticle suspension including the effect of clustering would

be necessary.

The fractal theory was proposed firstly by Man-

delbrot [4], a French mathematician. It can well describe

the disorder and stochastic process of clustering and

polarization of nanoparticles within the mesoscale limit.

Pitchumani and Yao [5] have firstly used fractal theory

in the research of effective thermal conductivity for

unidirectional fibrous composites, and obtained their

fractal characters. Yu et al. [6–8] obtained a fractal de-

scription of effective dielectric coefficient of composite

material using the traditional effective medium theory

and the widely used fractal theory. But, few reports to

use the fractal theory in descripting the cluster of

nanoparticle suspensions to predict the effective thermal

conductivity.
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In this paper, we will introduce briefly the effective

medium theory and the concept of fractal dimension for

nanoparticle clusters, together with the space description

of cluster radius, considering the effect of particle size

and surface adsorption, and attempt to establish a

fractal model for predicting the effective thermal con-

ductivity of liquid with nanoparticle inclusion.

2. Effective medium theory

There are two methods commonly used in effective

medium theory to treat the effective transport coefficient

of mixture and composites: the Maxwell–Garnett�s self-
consistent approximation (MG model) [9] and the

Bruggeman approach [10]. The former one fits well with

experimental data for dilute and randomly distributed

components included in a homogeneous host medium,

the particles are considered as to be isolated in the host

medium, no interactions existing among them. For the

two-component entity of spherical-particle suspensions,

the MG model [9] gives

keff
kf

¼ ð1� /Þðkp þ 2kfÞ þ 3/kp
ð1� /Þðkp þ 2kfÞ þ 3/kf

; ð1Þ

where keff is the effective thermal conductivity of liquid
with particle suspension, kf the thermal conductivity of
host medium, kp the thermal conductivity of particle,
and / the volume fraction of particles. The MG model is

applicable to suspension with low-concentration particle

inclusions.

The Bruggeman model with mean field approach is

used to analysis the interactions among the randomly

distributed. For a binary mixture of homogeneous

spherical inclusions, the Bruggeman model [10] gives

/
kp � keff
kp þ 2keff

� �
þ ð1� /Þ kf � keff

kf þ 2keff

� �
¼ 0 ð2Þ

and the solution of above quadratic equation is given as:

keff ¼ ð3/ � 1Þkp þ ½3ð1� /Þ � 1Þ�kf þ
ffiffiffiffi
D

p
; ð3Þ

D ¼ ð3/ � 1Þ2k2p þ ½3ð1� /Þ � 1Þ�2k2f
þ 2½2þ 9/ð1� /Þ�kpkf : ð4Þ

The Bruggeman model has no limitation on the con-

centration of inclusions, and can be used for particle

percolation in suspensions.

For low particle-concentration suspension, the

Bruggeman model shows almost the same result as the

MG model will give. For a particle percolation situation

or when the particle concentration is sufficiently high,

the MG model fails to predict precisely the experimental

results, while the Bruggeman model can still fit well with

experimental data. Hence, we will use Bruggeman model

to predict the effective thermal conductivity of nano-

particle clustering, and use otherwise the MG model to

approximate the effective thermal conductivity of

nanoparticle suspensions.

3. Fractal indexes

As Yu et al. [6–8] have proposed, we will use

Bruggeman model and fractal theory to predict the ef-

fective thermal conductivity of nanoparticle clusters. In

the aspect of fractals, Havlin and Ben-Avraham [11]

figured out that, the radius distribution of nanoparticles

and the distribution of nanoparticles in suspension have

both shown some kind of self-comparability. The scaling

theory is commonly used for the quantitative description

Nomenclature

a radius of nanoparticles

Df fractal dimension

Df1 fractal dimension of clusters

Df2 fractal dimension of cluster distribution

Dw anomalous diffusive index

Ds fractal sub-dimension

k effective thermal conductivity

l mean free path of phonons

M molecular weight of liquid

nðrÞ radius distribution function

NA Avogadro constant

q heat flux

r equivalent radius of cluster

t thickness of adsorption monolayer

T temperature

DT temperature difference

Greek symbols

/ volume fraction

d thickness of sample

Subscripts

ad adsorption

b bulk

cl cluster

eff effective

f liquid

p (nano)particle
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of fractal system. But, before going forward for its ac-

tual use, it is needed to introduce some definitions of

fractal indexes.

The fractal dimension, Df , is one of the basic vari-

ables for the description of fractals. It is established

through a scalar with unit e. If the volume (area, particle
numbers, etc.) of the fractal is F ðeÞ, then, the fractal
dimension Df can be decided through the following ex-

pression:

F ðeÞ ¼ CeDf ; ð5Þ

where C is a shape factor that is independent of e. Dif-
ferent fractal indexes are needed when describing the

complex fractals. The ‘‘anomalous diffusive index’’, Dw,

reflects the self-comparability of particle diffusion in the

host system, and can be approximated by the following

relation between Dw and Df :

2Df=Dw ¼ Ds¼: 1:33; ð6Þ

where Ds is the fractal sub-dimension that stands for the

self-comparability of space density fractals. The anom-

alous diffusive index, Dw, can thus be determined with

calculated fractal dimension, Df .

It is necessary to note that the fractal dimension of

clusters, Df1, is different from that for space distribution

of clusters, Df2. Both of them can be determined through

experiments. For particles of 25 nm SiO2 (mass con-

centration, 6.5%) suspended in ethanol (purity, 99.7%),

the electron microscopic photos of clusters in suspen-

sion, Fig. 1, and the radius distribution of them, Fig. 2,

can be taken by corresponding technology, with thin

film prepared by the quick freezing method of liquid

helium [2]. In Fig. 1, the fractal dimension of clusters,

Df1, is calculated to be 1.66; while the fractal dimension

of space distribution of clusters, Df2, is calculated to be

1.57.

4. Fractal model proposed

The enhancement in effective thermal conductivity

for liquid with nano-sized particles relates directly with

the particle interaction and clustering process. The

nanoparticle suspension should be considered to be

composed by host liquid and percolation patterned

cluster inclusions. Thus, when using Eq. (1), kp will be
replaced by the effective thermal conductivity of nano-

particle clusters, kclðrÞ, predicted by Bruggeman model.
Provided that different sizes of clusters, r, have formed

in suspension due to the interaction of nanoparticles

Fig. 1. The fractal dimension of section area of SiO2/ethanol cluster.

Fig. 2. The fractal dimension of radius distribution of clusters.
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of equal radius, a. The following equation can be ob-
tained from the fractal theory [12,13]:

f ðrÞ ¼ ðr=aÞDf1�3; ð7Þ

where r is the radius of nanoparticle clusters, f ðrÞ the
volume fraction, and Df1 the fractal dimension. By

Bruggeman approach [10], substitute f ðrÞ for / into

Eqs. (3) and (4), the effective thermal conductivity of

cluster can be expressed as kcl ¼ kclðrÞ.
The suspension of particles with same radii, a, can

now be treated as a suspension of clusters with different

radius, r. Then, using a group of established fractal in-
dexes, e.g. Df , Dw, etc., the fractal characteristic of the

space distribution of clusters can be described as [14]:

nðxÞ ¼ Bxg expð�bxjÞ; ð8Þ

where x ¼ r=n1=Dws , B and b being, respectively, functions
of randomly walk step number (time), ns, and g and j
corresponding to different fractal indexes. So, the cluster

size distribution varies with different ns. However, many

experimental data have shown that different ns lead the

function nðrÞ to a consistent curve. To the classical

Rosin–Rammlar fractal distribution function, the in-

dexes are settled as: j ¼ Dw=ðDw � 1Þ, g ¼ ðj� 1Þ. An
alternative method, which describes the completely sto-

chastic walk of a large amount of particles to form the

disordered clusters through the short distance adherence

forces, is the log normal distribution function. When the

volume of particles can be expressed as V ¼ Hrm, in
which H and m are constants about the shape factors of

particles, the following log normal distribution function

can approximately be used to describe nðrÞ [15]:

nðrÞ ¼ 1

r
ffiffiffiffiffiffi
2p

p
ln r

exp

8<
:� lnðr=�rrÞffiffiffiffiffiffi

2p
p

ln r

" #29=
;; ð9Þ

where �rr is the geometric mean radius, r is the standard
deviation. The value of �rr can be substituted approxi-

mately with the average radii, a, and r can take the

classic value of 1.5.

Using the multi-component MG model proposed by

Wood and Ashcroft [16], we can obtain the effective

thermal conductivity of suspension with nanoparticle

inclusions, considering the effect of particle clustering

and cluster distribution. Substitute the effective thermal

conductivity of clusters, kclðrÞ, and the radius distribu-
tion function, nðrÞ, into the modified MG equation, the

effective thermal conductivity of nanoparticle suspen-

sion can be expressed as:

keff
kf

¼
ð1� /Þ þ 3/

R1
0

kclðrÞnðrÞ
kclðrÞþ2kf

dr

ð1� /Þ þ 3/
R1
0

kfnðrÞ
kclðrÞþ2kf

dr
: ð10Þ

This equation is the proposed fractal model deduced for

predicting of effective thermal conductivity of liquid

with nanoparticles inclusion.

5. Consideration of size effect and surface adsorption of

nanoparticles

Without consideration of radiation, the heat carriers

in nanoparticles include only phonons and electrons.

Chen [17] established the transport regimes for these

heat carriers, according to the relation between the mean

free path of carriers and the length scale of nanostruc-

tures. When the mean free path of heat carriers is

comparable with the size of nanoparticles, i.e., 10–100

nm, the Boltzmann equation could be applicable for

describing the heat transfer process. Hence, using the

relaxation time approximation method [18], the effective

thermal conductivity of nonmetallic nanoparticles can

be approximated as

kp ¼
3a
=4

3a
=4þ 1
kb; ð11Þ

where kb is the (bulk) thermal conductivity of particle,
a
 ¼ a=l is the nondimensional radius, and l is the mean
free path of phonons. For the metallic nanoparticles, the

effective thermal conductivity can be achieved, provided

that the Wiedemann–Franz Law still holds when the

temperature is much higher than the Debye temperature.

The size effect on the phonon–electron coupling factor is

also negligible within the above-mentioned regime [19].

A cubic decreasing law was found in the effective electric

conductivity for particles smaller than 500 nm [20].

Thus, when the relaxation times of electron and phonon

are comparable, the following equation can be used for

effective thermal conductivity of metallic nanoparticles:

kp ¼
2a

5� 10�6

� �3

kb: ð12Þ

Now, we take insights into surface adsorption. The ad-

sorption of liquid molecules on the particle surface is

thought to be a monolayer one. The way of molecule

allocation on the surface is commonly considered to be a

hexagonal closed-packed style. From the Langmuir

formula of monolayer adsorption of molecules, the

thickness of the adsorption layer can be expressed as

[21].

t ¼ 1ffiffiffi
3

p 4M
qfNA

� �1=3

; ð13Þ

where M is the molecular weight of liquid, qf is the
density of liquid, and NA is Avogadro constant (6:023�
1023/mol). Since the monolayer always occurs in con-

junction with the particle sphere, they are completely

correlated [22], and hence, the effective thermal con-
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ductivity of the nanoparticle can be considered to be

the total thermal conductivity of these two substances

[16]:

kcp ¼ kad
ðkp þ 2kadÞ þ 2A3ðkp � kadÞ
ðkp þ 2kadÞ � A3ðkp � kadÞ

; ð14Þ

where A ¼ 1� t=ðt þ aÞ, kad is the effective thermal

conductivity of the adsorption layer. With the consid-

eration of surface adsorption, we should substitute

ðaþ tÞ, ½ðaþ tÞ=a�3/ and kcp for a, / and kp, respectively,
in Eqs. (2)–(10). The value of kad is hard to be predicted,
but from Eq. (14), we can take kad ! kcp as first ap-
proximation, and thus the calculated results will stand

for the upper bound of enhancement for effective ther-

mal conductivity of liquid with nanoparticles inclusion.

6. Analysis and discussion

The three-component core-shell-medium (CSM)

model [23] deduced from the MG approximation has

considered the adsorption process on the particle sur-

face. The Rayleigh model [24] concern the effect of

Table 1

Comparison of the calculated value of keff=kf using various models

Particle volume

fraction (%)

Bruggeman

model [10]

CSM model

[23]

Rayleigh model

[24]

CF model

[25]

Monecke model

[26]

Experimental

results [3]

0.1 1.00262 1.00192 1.00262 1.00266 1.00262 1.0982

0.2 1.00526 1.00386 1.00524 1.00539 1.00525 1.1252

0.3 1.00791 1.00582 1.00787 1.0082 1.00788 1.13984

0.4 1.01057 1.00781 1.01051 1.01108 1.01051 1.16996

0.5 1.01324 1.00982 1.01314 1.01404 1.01316 1.11238

0.6 1.01593 1.01185 1.01579 1.01708 1.01581 1.10531

Table 2

Data for calculation

Silicon dioxide Ethanol

Average radius a ¼ 25 nm

Mean free path of phonons l ¼ 14 nm Thickness of adsorption monolayer t ¼ 2:8 nm

Density qp ¼ 6310 kg/m3 Density qf ¼ 996 kg/m3

Thermal conductivity kp ¼ 32:9 W/m/K Thermal conductivity kf ¼ 0:613 W/m/K

Fig. 3. Measuring apparatus. (1) Valve; (2) ducting tube; (3) supporter (insulator); (4) Al sheet; (5) sample liquid; (6) plane heater; (7,9)

heat-loss measuring layer; (8,10) insulator; (11) reservoir.

Fig. 4. Comparison of proposed fractal model with experi-

mental data for CuO/deionized water.
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particle interaction, but for particle of small radius, its

accuracy is relatively higher than the MG model. The

Cichocki–Felderhof (CF) model [25] came from statis-

tical method and considered the interaction between

particles of same radius. The Monecke model [26] dis-

carded the physical topology technique of effective me-

dium theory, deduced on the assumption that the

effective thermal conductivity equals to an interpolation

between the extreme limits of its components. We

compare these models with experimental results for

suspension of CuO nanoparticles (50 nm) in deionized

water [3] in Table 1. Data used for calculation are listed

in Table 2. All these models function as the same in

dilute limit, yet none of them explains well with our

experimental data [3].

Our experiments were conducted on an apparatus

shown in Fig. 3, which was specially designed to suit the

condition, for which the testing medium is kept in its

original uniform temperature, T0 before being heated,
and the analytical solution is given by Carslaw and

Jaeger [27] as

keff ¼ qd=ð2DT Þ; ð15Þ

where q is the constant heat flux from the heating sur-

face, d is the thickness of sample, DT ¼ ðT3 � T4Þ is the

Fig. 5. The fractal dimension, Df , of clustering CuO nanoparticles in H2O. (a) Mass concentration¼ 0.02% (/ ¼ 0:13%); (b) mass

concentration¼ 0.04% (/ ¼ 0:25%); (c) mass concentration¼ 0.06% (/ ¼ 0:38%).
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temperature difference between the heating surface and

insulated bottom surface at quasi-steady-state, corre-

sponding to Fourior number greater than 0.55. The

cylindrical container for testing medium is 160 mm in-

side diameter and 9 mm deep. The Rayleigh number, Ra,
of the medium being tested is controlled less than 103, so

that liquid convection could be actually neglected. The

estimated uncertainty for measured value of keff is within
2.9%. Our experimental set-up checked well with the
measurements for thermal conductivity of liquids for

deionized water and ethanol, i.e., / ¼ 0, at temperature

around 300 K. The testing specimen with CuO nano-

particles inclusion, / > 0, were prepared by applying

supersonic wave for long time and no visible sediment

was found in experiment. Besides, we added sodium

dodecyl benzene sulphonate (SDBS), 2% by mass frac-

tion, as the dispersion agent to further improve the

distribution of particles in deionized water, and thus, to

avoid the direct contact of CuO particles.

As a trial, we take the fractal dimension as Df1 ¼ 1:66
and Df2 ¼ 1:57 from Figs. 1 and 2. The calculated results

with proposed fractal model were plotted and compared

with the experimental data in Fig. 4. It is to be aware

that these values of fractal dimension were derived from

electron microscopic photos of clustering SiO2 nano-

particles (25 nm in diameter) in ethanol. However, the

predicted effective thermal conductivities still reflect

qualitatively the tendency of variation if / < 0:5%. The
discrepancy may exist also due to the fact that anoma-

lous diffusive index represents only the local fractal

characteristic of particles suspensions.

To avoid or decrease such local effect, an alternative

method is used, which assumes that the cluster distri-

bution characteristics can be decided by the log normal

function. Transmission electron microscopy (TEM)

photos of 50 nm CuO particle suspensions in deionized

water and the derived value of Df for 50 nm CuO

nanoparticle with mass concentration of 0.02%, 0.04%

and 0.06% (corresponding to volume fraction of 0.13%,

0.25% and 0.38%), respectively, are quoted in Fig. 5. As

shown, the fractal dimensions of clusters, Df , for

/ ¼ 0:38% is comparatively increased much more than

that for / ¼ 0:25%.
Fig. 6 shows the calculated results by the fractal

model proposed using the log normal function for their

radius distribution. The modified fractal model fits well

with experimental data when the particle concentration

is less than 0.5%. Beyond this dilute limit, the possible

deposition effect may be considered, which is difficult for

the prediction of transport coefficients such as thermal

conductivity.

As to compare the effect of adsorption on the

nanoparticle surface, results with and without consid-

eration of adsorption effect are both shown in Fig. 6. An

obvious decrease in keff=kf is observed if the adsorption
effect is not to be considered, and thus, the packed liquid

molecules on the nanoparticle surfaces contribute obvi-

ously to the enhancement of effective thermal conduc-

tivity of liquid.

Though we predicted successfully the effective

thermal conductivity of nanoparticle suspensions, the

predictive calculation is complicated to involve the

application and the improvement of the effective medium

theory. Also, the space distribution of nanoparticle

clusters should be carefully concerned and described. In

addition, the prediction of effective thermal conductivity

of adsorption monolayer needs to be further studied. In

short, further research work would be needed to refine

the model we proposed here, especially for suspension of

metallic nanoparticles.

7. Conclusions

A fractal model is proposed for predicting the effec-

tive thermal conductivity of liquid with dilute suspen-

sion of nonmetallic nanoparticles. It involves the

application and improvement of the effective medium

theory.

The proposed fractal model predicts well the trend

for variation of the effective thermal conductivity with

dilute suspension of nanoparticles, and fits successfully

with our experimental data for 50 nm CuO particles

suspension in deionized water when / < 0:5%. The
calculated result also shows that the predictive calcula-

tion of effective thermal conductivity is complicated.

Further work would be needed, especially for metallic

nanoparticles inclusion.
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